@ TrainVerify

Equivalence-Based Verification

for Distributed LLM Training

Yunchi Lu'?, Youshan Miao?, Cheng Tan3?, Peng Huang!, Yi Zhu?, Xian Zhang?, Fan Yang?

IUniversity of Michigan ?Microsoft Reseach Asia 3Northeastern University

LLM training is costly

LLM training requires enormous resources — distributed training is @ must

“Arms race” for larger models — more resource-intensive training

Llama3 up to 16K H100 GPUs ~ 3 months ~ $100 M
DeepSeek-V3 2K H100 GPUs ~ 2 months ~ %6 M
PaLM 6K v4 TPUs ~ 3 months ~ $20 M

Distributed training is notoriously error-prone

Complex training stack

Model Code

00 LLAMA @ Qwen & DeepSeek
Parallelization
Megatron-LM DeepSpeed @ nnScaler
Training Orchestration & Runtime
O PyTorch TensorFlow .
Graph Lowering & Optimization J ‘ﬁx JAX
(@) s E 2 i
Communication & GPU kernels @ pen ;lvm P Triton
NVIDIA. AMD1 W2 HUAWEI

Heterogenous HW & Drivers

More than millions of lines of Python / C / CUDA code

Complexity — ? distributed training is error-prone

Parallelization bugs

A major class of bugs that is most elusive and costly

‘ only surface at distributed settings

e wrong tensor/op partitioning; misused comm collectives; faulty scheduling; ...

Jeopardize the correctness of distributed training

I Silent: often do not crash the training — Huge resource waste g@ E)

Example: a mysterious bug in Megatron-LM

O [BUG] Incorrect loss scaling in context parallel code logic

e Multi-device: Triggered when multiple GPUs are involved
* Root Cause: Incorrect loss scaling factor across multiple rounds of tensor synchronization
* Debug: Diagnosis took more than 10 days of combined efforts

* Hard to discover: Bug is introduced over 8 months earlier

Many models were trained without anyone realizing it.

Finding from our study

tensor / op partitioning
scheduling 4 1 4

communication

All state-of-the-art distributed training frameworks encounter
parallelization bugs in nearly every aspect of their workflow

Goal and research questions

While supporting existing systems with moderate verification efforts?

Parallel training systems: complex stack, diverse vendors, update rapidly
* Impractical to verify end-to-end training

* Prohibitive efforts to rewrite correct-by-construction systems

Key Insight

Principled parallelization frameworks have a well-defined Execution Plan

* Typically structured as a dataflow graph (DFG)

* Instantiated and transformed from logical (single-

device) model — captures parallelization logic

* Once an execution plan is fixed, it is used

for driving the training

1 = -
@ Parallelization correctness can be reasoned about

at the level of Execution Plans.

Cleaner and more structured — tractable verification

GPU2 GPU3
T1 T2 T5 x T6
T3 T7
g
T4 T8

J

def training_code_gpu3():
17
T8

op(T5, T6, args)
comm(T7, [GPU2,GPU3])

Contributions

Propose an Execplan-based approach to symbolically verify parallelization correctness

 Introduce verifiability into complex LLM training system

* A tool TrainVerify that makes this approach practical and scalable

Trade-off: focused scope to make verification tractable
@ Only target correctness of parallelization logic

* Not other types of bugs (buffer management, GPU kernel implementation, ...)

Parallelization: Logical Model — Execplan

Logical Model Parallel Execution Plan

Single-Device GPU GPU 7
Parallelizing a model:

N : - :
. - 7/ % g
* partition tensors and operations b/a l!l {

to devices @ —>

comm comm

states a
_] L]
* schedule execution order , l 1

Verify Equivalence for Execplan

Logical Model Parallel Execution Plan
Single-Device GPU 3 GPU 7
Parallelizing a model: ; : ;
. . o my
* partition tensors and operations @ @
* assign to devices @ —> .
* synchronize states @ @
. L] |]
» schedule execution order _ _ _

CheCk: VX, GL(X) E Gp(X)

Buggy parallelization

 the execution plan diverges from the logical definition of the model

Checking Parallelization Equivalence is essential for eliminating parallelization bugs
11

Verify Equivalence for Execplan

Deep learning relies on floating point computation — numerical drift

Value-based equivalence comparison is compromised

Conventional differential testing subject to many false alarms

outl = MatrixMultiply(A[:1,], B)

lel6 -1lel6 1 (%)
(1le16 + (-1lel6))+ o out2 = MatrixMultiply(A, B)[:1,]

1.
e.

lel6 +((-1lel6) + 1
()) Max(|outl-out2|) - 1669.2500

non-associative of FP numbers _ _
batch non-invariance

& False alarm for correct /
equivalent parallelization logic

Factors that amplify numerical drift: change in computation order,

parallelization, diverse GPU kernel implementation, mixed-precision training

12

Challenges

& Symbolically verify parallelization equivalence for execution plans

What is the representation to carry out the equivalence checking?

How to scale verification to large DNNs that have hundreds of billions of parameters?

13

Overview of TrainVerify

Propose

Achieve scalability through

and lineage to carry out verification

and

designs

Logical Model

==
}

€% Symbolic G,

stage 1 stage 2

& /! &

:
Lineage
|

<3§ == | Parallel Execution

Execution Plan

2
}

3> Symbolic Gp

L» Stage Decomposition J

ety L &KL

stage

©/ L

ﬁ Check stage equiv w/ Shape Reduction [¥] —{GL = Gp)

14

3

\X/

Symbolic Data Flow Graph (sDFG)

X sDFG: Constructed upon DFG of execution plans
1. Preserves the
2. PyTorch tensors —

3. PyTorch operators —
T Lol2

supporting symbolic tensors

z3.Real z3.Real () .
z3.Real z3.Real) *
A@B

numpy.ndarray
Elements as symbols!

We can construct algebraic expressions for model outputs.

15

Lineage: Bridge between G, and Gp

Crucial data structure encoding tensor mapping and partition semantics

From : SubTensorID

To : FullTensorID
: List[Slice]
: (VID, Count)

Similar Concept in multiple sys A«QD,.,
™, G.

* vlensor-pTensor in nnScaler oo oo

* DTensor in PyTorch B_'Q_' E

. (s) cﬁ@ﬁp_.,;;i(|)

Lineage: Bridge between G, and Gp

Crucial data structure encoding tensor mapping and partition semantics

From : SubTensorID
To : FullTensorlID
SliceMap: List[Slice]
ValueMap: (VID, Count)

Lineage = expressions
B A = concat([B,C],axis=0)
BD-=-F+F

Spec of parallelization equivalence (s, v:(1.1)) C —»@—»

Tensor IDs follows SSA

=M™, v:(1,1) @ B \—

7] (s:], v:(1,2))
7] (s, vi(2,2))

17

Stage Decomposition guided by lineage

¢ Extremely deep architectures of LLMs
* Lengthy & nested expressions

* Intractable complexity: solver unknown / out of memory
. Divide & Conquer: E2E verification — smaller, tractable stages

E2E stage | stage i+1 stage i+2
o. O—A—0 [O8 —4 B0
& N TOH0 | v o1 Bo--

)
&
%)
&)
(&) |
(&) |
&) |
Y]

18

Verifying a single stage

Each stage:
 Carry lineage for input / output tensors

as boundaries

Verity equivalence for a stage

B m | O |

Check
output equivalence

1s AlwaysTrue
Given
input Equivalence

and

19

Verifying all stages

Independently verfiable; executed in parallel

@ All stages pass = End to end equivalence between G, and Gp

T A failed stage = Localized equivalence violation

stage | stage I+1 stage I+2

20

Shape Reduction

> Original shape — Too many elements

* Tensors with symbolic real as elements

Leverage repetition in DNN operators

Same operation applied repeatedly across

di1 A12 A3

dzq1 Azo A3

dzq QAzo QAszg

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3

b3 b3o bss

Ci1 Ci12 Ci3

Co1/C22 Co3

C31 C32 C33

256 x 1024
256 x 1024
A
$ C
B
~1.6M elements
1024 x 1024

multiple sub-tensors

Cii=a by +a by +a,5:bsy

Copo=ag1:by o+ ass'brs+as3- b3o

21

Shape Reduction

LA
. Reduce redundancy with shape reduction s NC
B

* Verify equivalence on the same sDFGs

with tensor shapes reduced

Preserve structural and functional properties

* Following shape alignment & operator intactness constraints

of shape-reduced models faithfully

22

Implementation w/ Modular Design

f nnScaler IRGraph \/

equivalence checker

1
1
I
[
construct lineage /w enforce ' | symbolic operators
vTensor-pTensor SSA I
| reusable ops
1
Tensor Lineage &z SSA DFG Symbolic Engine

Graph Interface

Solver Interface

\ 4

Stage Decomposition

Vv

> Verify Equivalence

23

Verify Large-Scale LLM Parallelization

Verification Setup: single machine with a 32-core CPU and 1.3 TB memory

o T o | s |G
L1 8B 512

0.2h
L2 Llama3 70B 512 2.4h
L3 405B 8192 8.0h
D1 16B 128 0.4h
D2 DeepSeek-V3 236B 512 2.4h
D3 671B 2048 9.0h

* TrainVerify scales to the largest trainings

* (Can run asynchronously alongside training

Scalability Trends

16.0 - ..
512
0 0
q) N
£ 4.0 .qg) 128
32
1.0
512 1024 2048 4096 4 8 16 32
Global Batch Size Num Layers

time(s)

4096

512

64

2

8

16

32

64

Data Parallelism Degree

Verification cost is invariant
to original tensor shapes.

Verification cost is linear to
layers and parallelization degrees.

Eliminate Broad Categories of Bugs

Successfully detect reproduced parallelization bugs

)]
I

I MegatronLM
I DeepSpeed
nnScaler

-

comm. rank comp. scaling sched.
Category

o
L

N
L

of cases

o
I

Expose new bugs
£ C1: Sharding a non-partitionable dimension
£ C2: Dangling tensors in nnScaler IRGraph

& C3: Violation of tensor SSA in transformation

26

TrainVerify ore insge [

® Correctness Efficient Checking

Distributed LLM Training Stage Decomposition
Scope: Model Parallelization 1 Shape Reduction

Parallelization Equivalence

Execution Plans

Scalable Eliminate Bugs

Backup Slides

Data Flow Graph Availability

augmented tracer

= >

Single-device Multi-device
Data Flow Graph Data Flow Graph

29

A Training lteration

for in range():
.train()
for X, in
.zero_grad()
= 9
= (J)
.backward()
.step()
print(...)

TrainVerify focuses on one iteration to leverage loop homogeneity.

For inhomogeneous loops, we can run verification for each of them.

Operator Alignment

| | *@

Operators appearing in both logical and parallelized graphs

bear source code location as beacon for alignment.

Operator Alignment — Tensor Lineage Alignment

Source code location: # A/B.model, Line 24, X, = Op(X;)

Source code location: # A/B.model, Line 25, X5 = 0p(X,)

31

Lineage as Spec for PE

From
To

: SubTensorID
: FullTensorID
: List[Slice]
: (VID, Count)

Lineage

What if lineage is wrong?

* Possible: false positive (false alarm)

* Guarantee: no false negative (false pass)

S
stage 1+

1

stage I+2

32

Expressiveness of symbolics

Symbolics can not:
» Serve as array indexing: arr[x |

» Express index as output: x = argmax(-)

Affect a small number of ops

Solution:

* Need tricks in rewriting symbolic operator

» Use uninterpretd function to encode tensor algebraic properties, make it adequate for

passing equivalence checks for practical parallelization

33

