
TrainVerify
Equivalence-Based Verification
for Distributed LLM Training

Yunchi Lu1,2, Youshan Miao2, Cheng Tan3,2, Peng Huang1, Yi Zhu2, Xian Zhang2, Fan Yang2

1University of Michigan 2Microsoft Reseach Asia 3Northeastern University

SOSP
2025

LLM training is costly

LLM training requires enormous resources → distributed training is a must

“Arms race” for larger models → more resource-intensive training

Model Training Scale Time Cost

Llama3 up to 16K H100 GPUs ∼ 3 months ∼ $100 M

DeepSeek-V3 2K H100 GPUs ∼ 2 months ∼ $6 M

PaLM 6K v4 TPUs ∼ 3 months ∼ $20 M

2

Complex training stack

More than millions of lines of Python / C / CUDA code

Complexity → distributed training is error-prone

Distributed training is notoriously error-prone

Model Code

Parallelization

Graph Lowering & Optimization

Training Orchestration & Runtime

Communication & GPU kernels

Heterogenous HW & Drivers

Triton

Megatron-LM nnScaler

LLAMA

JAX

Qwen DeepSeek

DeepSpeed

3

Jeopardize the correctness of distributed training

Silent: often do not crash the training → Huge resource waste

Parallelization bugs

A major class of bugs that is most elusive and costly

 Parallelization Bugs
● wrong tensor/op partitioning; misused comm collectives; faulty scheduling; …

4

only surface at distributed settings

Example: a mysterious bug in Megatron-LM

[BUG] Incorrect loss scaling in context parallel code logic

• Multi-device: Triggered when multiple GPUs are involved

• Root Cause: Incorrect loss scaling factor across multiple rounds of tensor synchronization

• Debug: Diagnosis took more than 10 days of combined efforts

• Hard to discover: Bug is introduced over 8 months earlier

5

Many models were trained without anyone realizing it.

Don’t blame it!

Finding from our study

All state-of-the-art distributed training frameworks encounter
parallelization bugs in nearly every aspect of their workflow

Cause Megatron-LM DeepSpeed nnScaler

tensor / op partitioning 16 18 19

scheduling 4 1 4

communication 8 13 5

Total 26 28 25

6

Goal and research questions

Given the high stakes, can we formally verify that the
parallelization logic is correct before distributed training starts?

While supporting existing systems with moderate verification efforts?

Parallel training systems: complex stack, diverse vendors, update rapidly

• Impractical to verify end-to-end training

• Prohibitive efforts to rewrite correct-by-construction systems

7

Key Insight

• Typically structured as a dataflow graph (DFG)

comm comm

op op

… …

… …

GPU2 GPU3

T1 T2

T3

T4

T5 T6

T7

T8

…

…

def training_code_gpu3():
 ...
 T7 = op(T5, T6, args)
 T8 = comm(T7, [GPU2,GPU3])
 ...

8

Principled parallelization frameworks have a well-defined Execution Plan

Parallelization correctness can be reasoned about

at the level of Execution Plans.

Cleaner and more structured → tractable verification

• Once an execution plan is fixed, it is used

for driving the training

• Instantiated and transformed from logical (single-

device) model → captures parallelization logic

Contributions

9

Propose an Execplan-based approach to symbolically verify parallelization correctness

• Introduce verifiability into complex LLM training system

• A tool TrainVerify that makes this approach practical and scalable

Trade-off: focused scope to make verification tractable

• Only target correctness of parallelization logic

• Not other types of bugs (buffer management, GPU kernel implementation, …)

🎯

Parallelization: Logical Model → Execplan

10

comm comm

op' op'
… …

… …

GPU 3 GPU 7

…

…

op

…
…

Single-Device

Logical Model Parallel Execution Plan

Parallelizing a model:
• partition tensors and operations
• assign to devices
• synchronize states
• schedule execution order

Verify Equivalence for Execplan

11

Buggy parallelization

• the execution plan diverges from the logical definition of the model

comm comm

op' op'
… …

… …

GPU 3 GPU 7

…

…

op

…
…

Single-Device

Logical Model Parallel Execution Plan

Checking Parallelization Equivalence is essential for eliminating parallelization bugs

Check: ∀𝑿,GL(𝑿) = GP(𝑿)

Parallelizing a model:
• partition tensors and operations
• assign to devices
• synchronize states
• schedule execution order

• Value-based equivalence comparison is compromised

• Conventional differential testing subject to many false alarms

Verify Equivalence for Execplan Symbolically

12

• Deep learning relies on floating point computation → numerical drift

Device = GPU
out1 = MatrixMultiply(A[:1,], B)
out2 = MatrixMultiply(A, B)[:1,]
Max(|out1–out2|) → 1669.2500

batch non-invariance

Device = CPU
1e16 + (-1e16) + 1 = 1.0
1e16 + (-1e16) + 1 = 0.0

non-associative of FP numbers

()
()

🚨 False alarm for correct /
equivalent parallelization logic

• Factors that amplify numerical drift: change in computation order,

parallelization, diverse GPU kernel implementation, mixed-precision training

Challenges

What is the representation to carry out the equivalence checking?

How to scale verification to large DNNs that have hundreds of billions of parameters?

13

🎯 Symbolically verify parallelization equivalence for execution plans

Overview of TrainVerify

14

…/

Lineage Symbolic GPSymbolic GL

Stage Decomposition

Check stage equiv w/ Shape Reduction

/

GL	≡ GP

…
stage 1
=?

stage 3
=?

stage 2
=? Parallel Execution

Propose symbolic dataflow graph and lineage to carry out verification
Achieve scalability through stage-parallel and shape-reduction designs

Execution PlanLogical Model

Symbolic Data Flow Graph (sDFG)

15

We can construct algebraic expressions for model outputs.✅

sDFG: Constructed upon DFG of execution plans

1. Preserves the same graph structure

2. PyTorch tensors → symbolic tensors

3. PyTorch operators → rewritten operators supporting symbolic tensors

🛠

numpy.ndarray

z3.Real z3.Real
z3.Real z3.Real

def symbolic_matmul(A,B):
 return A @ B

Tensor as one symbol?🤔

Elements as symbols!

Lineage: Bridge between GL and GP

16

Crucial data structure encoding tensor mapping and partition semantics

From : SubTensorID
To : FullTensorID
SliceMap: List[Slice]
ValueMap: (VID, Count)

Similar Concept in multiple sys

• vTensor-pTensor in nnScaler

• DTensor in PyTorch

• …

GL

GP

A

B

C

D

E

F(s: , v:(1,1)) (s: , v:(2,2))

Lineage: Bridge between GL and GP

17

Crucial data structure encoding tensor mapping and partition semantics

A = concat([B,C],axis=0)

D = E + F

Lineage ⇒ expressions
GL

GP

A

B

C

D

E

F

(s: , v:(1,1))

(s: , v:(1,1))

(s: , v:(1,2))

(s: , v:(2,2))

From : SubTensorID
To : FullTensorID
SliceMap: List[Slice]
ValueMap: (VID, Count)

Spec of parallelization equivalence

Tensor IDs follows SSA

Stage Decomposition guided by lineage

18

…

…
…

stage i stage i+1 stage i+2E2E

GL

GP

Extremely deep architectures of LLMs

• Lengthy & nested expressions

• Intractable complexity: solver unknown / out of memory

🤔

💡 Divide & Conquer: E2E verification → smaller, tractable stages

Verifying a single stage

19

…

…
…

stage i+1 stage i+2E2E

Each stage:

• Carry lineage for input / output tensors

as boundaries

stage i

GL

GP

input Equivalence

 and operations

Check

Given
is AlwaysTrue

output equivalence

A == concat([B,C],axis=0)

D == E + F

D ← Op (A)
E ← Op1(B)
F ← Op2(C)

A

B
C

D

E

F

Op

Op1
Op2

Verify equivalence for a stage

Verifying all stages

20

…

…
…

stage i+1 stage i+2E2E stage i

GL

GP

All stages pass ⟹ End to end equivalence between GL and GP

A failed stage ⟹ Localized equivalence violation

Independently verfiable; executed in parallel

Shape Reduction

21

Original shape → Too many elements

• Tensors with symbolic real as elements

🤔

B

A

1024 x 1024

256 x 1024

256 x 1024

~1.6M elements

Cmat
mul

Leverage repetition in DNN operators

• Same operation applied repeatedly across multiple sub-tensors

c1,1 = a1,1·b1,1 + a1,2·b2,1 + a1,3 · b3,1

c2,2 = a2,1·b1,2 + a2,2·b2,2 + a2,3 · b3,2
=

a1,1

a2,1
a3,1

a1,2

a2,2
a3,2

a1,3

a2,3
a3,3

b1,1

b2,1
b3,1

b1,2

b2,2
b3,2

b1,3

b2,3
b3,3

c1,1

c2,1
c3,1

c1,2

c2,2
c3,2

c1,3

c2,3
c3,3

x

Shape Reduction

22

A
MA

C

B

mat
mul

KA

NB MC

Preserve structural and functional properties

• Following shape alignment & operator intactness constraints

Verified equivalence of shape-reduced models faithfully extends to the original

Reduce redundancy with shape reduction

• Verify equivalence on the same sDFGs

with tensor shapes reduced

💡

Implementation w/ Modular Design

23

Solver InterfaceGraph Interface
SSA DFGTensor Lineage Symbolic Engine

Stage Decomposition Verify Equivalence

symbolic operators

equivalence checker

reusable ops

construct lineage /w
vTensor-pTensor

enforce
SSA

nnScaler IRGraph

Verify Large-Scale LLM Parallelization

24

Time

0.2h

2.4h

8.0h

0.4h

2.4h

9.0h

ID Model Size GPUs

L1

Llama3

8B 512

L2 70B 512

L3 405B 8192

D1

DeepSeek-V3

16B 128

D2 236B 512

D3 671B 2048

• TrainVerify scales to the largest trainings

• Can run asynchronously alongside training

Verification Setup: single machine with a 32-core CPU and 1.3 TB memory

Scalability Trends

25

Verification cost is invariant
to original tensor shapes.

Verification cost is linear to
layers and parallelization degrees.

Global Batch Size
Hidden Dimension
Sequence Length

Num Layers Data Parallelism Degree
Tensor Parallelism Degree

Eliminate Broad Categories of Bugs

26

Successfully detect reproduced parallelization bugs

Expose new bugs

C1: Sharding a non-partitionable dimension

C3: Violation of tensor SSA in transformation

C2: Dangling tensors in nnScaler IRGraph

Correctness🎯
Distributed LLM Training

Scope: Model Parallelization

Parallelization Equivalence

=

Execution Plans

Efficient Checking
aStage Decomposition

Shape Reduction

IR

https://github.com/verify-llm/TrainVerify

Tensor
Lineage

Symbolic
DFG

Scalable Eliminate Bugs
27

TrainVerify

Backup Slides

28

Data Flow Graph Availability

Single-device
Training Code

Distributed
Training Code

…

or

Single-device
Data Flow Graph

Multi-device
Data Flow Graph

augmented tracer

29

A Training Iteration

for epoch in range(num_epochs):
 model.train()

 for x, target in train_loader:
 optimizer.zero_grad() # reset gradients
 y = model(x) # forward
 loss = criterion(y, target) # loss
 loss.backward() # backward
 optimizer.step() # update parameters

 print(...) # validation, logging, checkpointing

TrainVerify focuses on one iteration to leverage loop homogeneity.

For inhomogeneous loops, we can run verification for each of them.
30

Logical

Parallel

A B

C E

D F

G

H

J

K

…

…

…

…

…

…

Op Source code location: # A/B.model, line 24, X2 = Op(X1) Op1 Op2

Op’ Op’1 Op’2 Source code location: # A/B.model, line 25, X3 = Op(X2)

Operators appearing in both logical and parallelized graphs

bear source code location as beacon for alignment.

Operator Alignment → Tensor Lineage Alignment

31

Operator Alignment

Lineage as Spec for PE

32

…

…
…

stage i stage i+1 stage i+2E2E

GL

GP

From : SubTensorID
To : FullTensorID
SliceMap: List[Slice]
ValueMap: (VID, Count)

Lineage
👉

What if lineage is wrong?

• Possible: false positive (false alarm)

• Guarantee: no false negative (false pass)

🚨 🚨

Expressiveness of symbolics
Symbolics can not:

• Serve as array indexing: arr[x]

• Express index as output: x = argmax(·)

Affect a small number of ops

Solution:

• Need tricks in rewriting symbolic operator

• Use uninterpretd function to encode tensor algebraic properties, make it adequate for

passing equivalence checks for practical parallelization

33

