
1⃣ Slow-fault tolerance is nuanced and sensitive to
Slow faults: Severity, type, location, duration, start time
Deployment: Resources, configs, workloads

Examples of Counter-Intuitive Behaviors:
• ⚡ A small slow fault can cause more degradation 

than a larger one.
• ⚡ Slow followers can impose 1.5× more performance 

penalty than slow leaders.

• ⚡ Scaling up resources improves baseline 
performance, but amplifies the impact of slow faults.

2⃣ (Finding 7) “Danger zones” where slight fault increases 
trigger major performance drops are common across 
systems.

Evaluated 6 modern distributed systems’ fault tolerance 
under diverse faults.

Injected diverse slow faults:
• Network delays / packet loss
• File system slowness
• Varying severity levels
• Different injected node roles
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Latest stable versions Diverse Kinds of Services

Diverse Benchmarking Workloads

Simply use X’s p99 as T’s value may not 
work: 
• Always 1% false positives.
• Fails to distinguish between workload 

changes and real slowness.
• Infrequent updates dilute p99, letting true 

faults slip by. 

Fail-slow faults (e.g., degraded disks, networks) are subtle 
and can be impactful to overall system performance.

In the 12 years since the last major study (limplock, 
SoCC’13), systems have evolved drastically:
• Asynchronous designs and event-driven 

architectures.
• Cloud-native deployments and dynamic workloads.
• More complex, high-concurrency hardware.

Do modern systems handle slow faults well? We 
conduct a systematic study to find out. 

Motivation

Study Methodology

💫 Key Findings (complete list in the paper)
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Automated Slow-Fault Injection Pipeline:
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30% higher degradation

Compared to a slow leader, 
            a slow follower yields… 

177% higher degradation

Slow-fault handling mechanisms exist, but detection still 
relies on static thresholds. (e.g., Copilot [OSDI’20], IASO, 
HBase, Cassandra configs)

One-Size-Fits-None: The Flaws of SOTA Approaches

Finetuned thresholds fail under 
different workloads.

Relying on static, fine-tuned configurations 
makes a system’s slow-fault tolerance fragile

ADR – Adaptive Detection at Runtime

Failure detection needs to be adaptive
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ADR: A lightweight, plug-in library for detecting fail-slow 
issues in distributed systems.
1. Traces built-in slowness metrics such as latency.
2. Automatically adapts thresholds based on metrics’ 

1. p99
2. Update frequency to rule out normal variations.

Reduce degradation by 
16-90%

Timely detection in 
seconds

Minimal 2.8% average 
overhead 

Contributions

1. Automated testing pipeline to measure slow-fault 
tolerance

2.  Slow-fault tolerance is nuanced and sensitive to
Slow faults (5 findings) and Deployment (4 
findings)

3.  Detecting slowness with static thresholds is 
insufficient

4.  ADR – lightweight, adaptive slow-fault detection 
library at runtime


