
1⃣ Slow-fault tolerance is nuanced and sensitive to
Slow faults: Severity, type, location, duration, start time
Deployment: Resources, configs, workloads

Examples of Counter-Intuitive Behaviors:
• ⚡ A small slow fault can cause more degradation

than a larger one.
• ⚡ Slow followers can impose 1.5× more performance

penalty than slow leaders.

• ⚡ Scaling up resources improves baseline
performance, but amplifies the impact of slow faults.

2⃣ (Finding 7) “Danger zones” where slight fault increases
trigger major performance drops are common across
systems.

Evaluated 6 modern distributed systems’ fault tolerance
under diverse faults.

Injected diverse slow faults:
• Network delays / packet loss
• File system slowness
• Varying severity levels
• Different injected node roles

One-Size-Fits-None: Understanding and Enhancing Slow-Fault Tolerance
in Modern Distributed Systems

Ruiming Lu, Yunchi Lu, Yuxuan Jiang, Guangtao Xue, Peng Huang

👈 Preprint

Software 👉

Time (s)0 𝑡! 𝑡" 𝑡#$%

Slow network

② Warm-up ③ Slow fault injection ④ Recovery

Benchmark starts

① Init

flexible duration

Or

Or

flexible
start time

Th
ro

ug
hp

ut

Flaky network

Slow filesystem

Sample throughput time series

𝑡&$'#()

0

25

50

75

100

CRDB etcd
follower

etcd
leader

HDFS
data

HDFS
name

Pe
rfo

rm
an

ce
de

gr
ad

at
io

n
(%

)

0

25

50

75

100

Cass. CRDB etcd
follower

etcd
leader

HBase
region

HDFS
data

HDFS
name

Kafka
0

25

50

75

100

Cass. CRDB etcd
follower

etcd
leader

HBase
region

HDFS
data

HDFS
name

Kafka

fs
delay 1ms

fs
delay 10ms

fs
delay 100ms

fs
delay 1s

nw
flaky 1%

nw
flaky 10%

nw
flaky 40%

nw
flaky 70%

nw
delay 100us

nw
delay 1ms

nw
delay 10ms

nw
delay 100ms

nw
delay 1s

Latest stable versions Diverse Kinds of Services

Diverse Benchmarking Workloads

Simply use X’s p99 as T’s value may not
work:
• Always 1% false positives.
• Fails to distinguish between workload

changes and real slowness.
• Infrequent updates dilute p99, letting true

faults slip by.

Fail-slow faults (e.g., degraded disks, networks) are subtle
and can be impactful to overall system performance.

In the 12 years since the last major study (limplock,
SoCC’13), systems have evolved drastically:
• Asynchronous designs and event-driven

architectures.
• Cloud-native deployments and dynamic workloads.
• More complex, high-concurrency hardware.

Do modern systems handle slow faults well? We
conduct a systematic study to find out.

Motivation

Study Methodology

💫 Key Findings (complete list in the paper)

0

25

50

75

100

CRDB etcd
follower

etcd
leader

HDFS
data

HDFS
name

Pe
rfo

rm
an

ce
de

gr
ad

at
io

n
(%

)

0

25

50

75

100

Cass. CRDB etcd
follower

etcd
leader

HBase
region

HDFS
data

HDFS
name

Kafka
0

25

50

75

100

Cass. CRDB etcd
follower

etcd
leader

HBase
region

HDFS
data

HDFS
name

Kafka

fs
delay 1ms

fs
delay 10ms

fs
delay 100ms

fs
delay 1s

nw
flaky 1%

nw
flaky 10%

nw
flaky 40%

nw
flaky 70%

nw
delay 100us

nw
delay 1ms

nw
delay 10ms

nw
delay 100ms

nw
delay 1s

Automated Slow-Fault Injection Pipeline:

0

25

50

75

etcd
follower

etcd
leader

delay 1s
nw
flaky 1%

nw
flaky 10%

nw
flaky 40%

nw
flaky 70%

D
eg

ra
d

at
io

n
(%

)

𝑝40

𝑝70
30% higher degradation

Compared to a slow leader,
 a slow follower yields…

177% higher degradation

Slow-fault handling mechanisms exist, but detection still
relies on static thresholds. (e.g., Copilot [OSDI’20], IASO,
HBase, Cassandra configs)

One-Size-Fits-None: The Flaws of SOTA Approaches

Finetuned thresholds fail under
different workloads.

Relying on static, fine-tuned configurations
makes a system’s slow-fault tolerance fragile

ADR – Adaptive Detection at Runtime

Failure detection needs to be adaptive

X

xxx.java

X = ...;
if (){
...

}

X T>

Built-in variable

Value of metrics,
such as latency

X

T Sta4c threshold

ADR: A lightweight, plug-in library for detecting fail-slow
issues in distributed systems.
1. Traces built-in slowness metrics such as latency.
2. Automatically adapts thresholds based on metrics’

1. p99
2. Update frequency to rule out normal variations.

Reduce degradation by
16-90%

Timely detection in
seconds

Minimal 2.8% average
overhead

Contributions

1. Automated testing pipeline to measure slow-fault
tolerance

2. Slow-fault tolerance is nuanced and sensitive to
Slow faults (5 findings) and Deployment (4
findings)

3. Detecting slowness with static thresholds is
insufficient

4. ADR – lightweight, adaptive slow-fault detection
library at runtime

