One-Size-Fits-None: Understanding and Enhancing
Slow-Fault Tolerance in Modern Distributed Systems

Ruiming Lu, Yunchi Lu, Yuxuan Jiang,
Guangtao Xue, Peng Huang

UNIVERSITY OF

NSDI ’25 MICHIGAN

Challenges for distributed system fault tolerance

Still functioning but with

* Failures in The Wild
lower-than-expected performanc;

e Fail-Slow

* Fail-Stop FAIL-STOP FAIL-SLOW HEALTHY

* Metastable @ ggg @

Non-functional Full-speed

Fail-slow is a severe problem

Cluster

(A 0_0
Vamua O

Device

“Cascade to node- or even cluster-level limplock™.”

Fail-slow is not uncommon

Annual fail-slow)
@ failure rate is 1-2%"|)

As frequent as fail-
stop incidents!

S

Fail-slow is hard to handle

‘System components shall be J

@ i either correct or StOpped[3]”

[Lucky me! | am in between! LFA'L'SLOW

&

Slow-fault tolerance studied in 2013

Limplock [SoCC "13]:

* Focus on Hardware e Worst-Case Scenario

* Disk and NIC * Up to 1000X and persistent slowdown

A Slow faults are way more complicated!

varying severity, duration, timing, etc.

Evolvement from 2013 to 2025

* More Powerful Hardware * Advances in Software Design
* Network: 100 Mbps -> 100 Gbps * Decade’s Bug Fixes
* Storage: 600 MB/s -> 6GB/s * Asynchronous Programming
* CPU cores: 41—8 > ~128 * Event-Driven Design

Slow-Fault Talerance in
Modern Distributed Systems

Our studied systems
W'”’ metcd ﬁﬁﬁééﬁ @ CockroachDB " §@ kafka

cassandra

* 6 widely-used distributed systems:
e Latest stable versions

* Diverse services:

* Database, big data, storage, and streaming

* Tested by cloud benchmarks with distinct workloads

e e.g., for DB: read-only, write-only, mixed, range query, and transaction

Evaluating slow-fault tolerance is hard

* Slow faults are multi-faceted

Severity

Start time Type

Duration Location

Hard to quantify
slow-fault tolerance

Many combinations to test

We propose:

A slow-fault injection testing pipeline

10

Automated testing

Sample throughput time series

@ Init @ Warm-up @ Slow fault injection @ Recovery
< ' g A Y A .4 = N
: : : flexible duration : I
——— Aee—————— I
I | | ___ Slownetwork | |
| | Or | |
| | flexible /I/,————————————————————, | |
I | start time —:""_____F_IEEXD_GEVI’QEK_____' I I
I Benchmark starts I NY W O Ao paa/ I I
> | 1 Slow filesystem | I
® ® - o—— - ® ®
t i t t
0 1 inject Time (S) 2 end
Start time
Duration
High coverage of slow faults < Faulttype
Severity
Location

11

We find:

Slow-fault tolerance is highly sensitive to

deploying environments and slow faults

4 findings 5 findings

12

Hard for developers to anticipate future deployment

SOE i

cassandra

Design Deployed Used

» § CockroachDB 3etcd » Operator — User

, Managed
i@‘hadaap §€ kafka

Developer

13

Hard for developers to anticipate future deployment

\W/ ‘%“yi HHHHHH

HBASE

cassandra

Design Deployed Used

Developer » () CockroachDB &)etcd > Operator — User

, Managed
\ i ThERlEEs §€ kafka 43/ /
®

14

Hard for developers to anticipate future deployment

How systems are deployed
(e.g., hardware resources, software configs)

Developer cannot anticipate py OPerator

User
What workloads are running

(e.g., distinct 10 patterns)

15

We find:
Slow-fault tolerance is highly sensitive to

Resources Configs Workloads

16

We find:
Slow-fault tolerance is highly sensitive to

Resources Configs Workloads

17

Does Tuning Configurations Help?

Slow-related configs

hbase.

hbase
hbase

hbase

ipc.slow.metric.time

.regionsever.wal.slowsync.ms
.regionserver.wal.roll.on.sync
hbase.

regionserver.wal.sync.timeout

.rpc.timeout
hbase.

client.retries.number

.MS

4

7,776 combinations of configurations

Slow faults
finetune

» Adapt to fixed < Workloads
540 machine hours

Resources

Static setup

18

Tuning configs under static setups

Under fixed slow faults, workloads, and resources:

100 ;

Degradation (%)

Default configs achieve 98% degradation

80 -

60 -

40 |

20 |

I

=== \/anilla (98% degradation)
< 20% degradation

=== 20~50% degradation

=== > 50% degradation

A i

0

100 150 200 250 300 350 400 450 500 540
Sets of configurations

19

Tuning configs under static setups

Under fixed slow faults, workloads, and resources:

Default configs achieve 98% degradation

100 ;

g 80 === \/anilla (98% degradation)
.f_iD 60 | m—m < 20% degradation
©
8 401 Lol =l e e el e e e - === 20~50% degradation
(@] ‘ Il
a 20 | | | === > 50% degradation
LT
0 | W NIRRT RO T A R AT O 0 M W B0)

200 250 300 350 400 450 500 540
Sets of configurations

Finetuned configs can get ~20% degradation
20

Pick the optimal configs under static setups

\4

Test under different workloads

21

Test under different workloads

;\? 1001 - - -
= 751
® 50 I L B Tuned
P I X Others
S 251 . : =
()] 0 = z
1 8321 8321 8321 8321 8321 8 32
10K 1M 10K 1M 10K 1M
readonly mixed writeonly

Thread count / record count / workload

22

Test under different workloads

:\5 100~
= 75- —r—
(@)} 25 - I Others
8 ‘W
0- 1

1 8321 8321,832/1 8321 8321 8 32
10K 1M 10K 1M 10K 1M

readonly mixed writeonly
Thread count / record count / workload

BT

Setup 1 0
(fine-tuned) Vv 27%

Setup 2
(suboptimal)

23

Previously optimal setup does not work well

Test under different workloads

Degrad. (%)

100 -
75~
50-
25+

|
|. |
=

10K

readonly mixed
Thread count / record count / workload

EENTTIETTy

B Tuned
Others

Not always optimal

41% worse when workload changes

Setup 1
(fine-tuned)

Setup 2
(suboptimal)

Vv 27%

30%

X a8%

34%

24

Previously optimal setup does not work well

Test under different workloads

§ 1001 - -
751
50 1
251
0..
50 1
251
0..

Degrad. (

lter.

I I B Tuned
'y I Others

I

--l
N

“HEE | TEEE = e

Compl.

1 8 32 1 8 32 8

321 8321 8 321 8 32

10K 1M 10\\ 1M 10K 1M

readonly

mixed writeonly
Thread count / recorthcount / workload

35 out of 50 runs failed

Not always optimal

Overfit & harm availability

25

Our finding:
Tuning configs only improves tolerance under

static, controlled setups

26

Insight:
Relying on static, fine-tuned configurations

makes a system’s slow-fault tolerance fragile

27

<More findings in the paper>

Slow-fault tolerance is highly sensitive to

Resources Cehtes Workloads
N

4)
Scaling up resources improves performance but

\adversely expands (up to 10X) the impact of slow faults/

28

<More findings in the paper>

Slow-fault tolerance is highly sensitive to

Rescurees Cehtes W%kloads

-

Danger zone commonly exists:

~

slightly heavier slowness = significantly higher degradation

/

e.g., in Cassandra: network delay 0.1ms / 1ms = degradation 10% / 50%

29

We find:

Slow-fault tolerance is highly sensitive to

depleymg—emumnment-s and slow faults

4 flndmgs 5 flndlngs

30

We find:

Slow-fault tolerance is highly sensitive to

Injection test : : :
slow faults — testing pipeline

Severity

Start time Q Type

Duration Location

31

Degradation (%)

Slow-fault injection test

fIaky 1% flaky 10% flaky 40% H;vky 70% ¢ Seve r I ty

T

foﬁgﬁer Ieee:g%r D — LOC&tiOh

32

Slow-fault injection test

nw nw

flaky 1% flaky 10% . flaky 40% flaky 70%

Degradation (%)

etcd etcd
follower leader

Our finding:

Compared to a slow leader,

a slow follower yields...

30% higher degradation

177% higher degradation

A slow follower is more harmful than a slow leader

33

Static timeout = Ineffective detection

Bad detection

Heartbeats | FAIL-SLOW

Static timeout | «——//
. Keepalive ping |

In practice, how do developers detect slowness?

37

Static-threshold-based slow detection

Slow sync detection in HBase

1 public void postSync(syncTime) { | (sync, query, logging)

\ System metric slow?
—

9 }

Static-threshold-based slow detection

Slow sync detection in HBase

1 public void postSync(syncTime) { | (sync, query, logging)
2 if (syncTime > 100ms) { System metric slow?
_ S Warning
threshold
v
8 }
9 }

Static-threshold-based slow detection

Slow sync detection in HBase

1 public void postSync(syncTime) { | (sync, query, logging)
2 if (syncTime > 100ms) { System metric slow?
3 LOG.INFO(...);

warning

threshold

v

8 } — Trigger a warning action
9 }

Static-threshold-based slow detection

Slow sync detection in HBase

1 public void postSync(syncTime) { | (sync, query, logging)
2 if (syncTime > 100ms) { System metric slow?
3 LOG.INFO(...);
4 counter += 1;

\ S warning

threshold
v

8 } Trigger a warning action
9 }

Static-threshold-based slow detection

Slow sync detection in HBase

1 public void postSync(syncTime) { | (sync, query, logging) > fatal threshold
2 if (syncTime > 100ms) { System metric slow? / >
3 LOG.INFO(...);
4 counter += 1;
5 if (syncTime > 10s || 5 Warning
counter >= @»)L threshold
7 } =
8 } Trigger a warning action
9 }

Static-threshold-based slow detection

Slow sync detection in HBase

1 public void postSync(syncTime) {
2 if (syncTime > 100ms) {

3 LOG.INFO(...);

4 counter += 1;

5 if (syncTime > 10s ||
counter >= 100) {

6 requestLogRoll();

7 }

8 }

9 }

(sync, query, logging) > fatal threshold
System metric slow?

» Irigger a fatal action
/

warnin
/

threshold

v
Trigger a warning action

43

Developers use static, over-conservative thresholds

100 1

~
(63}

Performance
degradation (%)
N (&)
({1 o

o

System Metric

Static threshold

Warning Warning Fatal
Threshold Count Threshold

Cassandra Execution time of last query 1 500 ms - - |
CRDB Execution time of last disk write I Ss - 20s !
CRDB Time to flush pending logs 10 - 20 :
etcd /1livez to check raft loop execution : 5s 3 - I
HBase Time to flush WAL to disk | 100 ms 100 10s |
HDFS Time to get read ACK from datanodes | 30s - - 1
Kafka Execution time of last request]_30s - 2min |
1 100ms, 500ms
Over-conservative: 5s, 10s, 20s, 30s
2min
nw
delay 100ms

@R R
g - rd
(g (gl
7 >
¢ 1N
I —_—

Cass. CRDB etcd etcd HBase HDFS HDFS Katka
followerleader region data name

> 509% degradation at only 100ms delay!

44

Slow-tolerant protocol suffers from static timeouts
Copilot [OSDI ‘20]

100 -

Performance
Degradation (%)
N (&) ~N
(&)} o (6}

o

MultiPaxos EPaxos Copilot

*
|

100us 1ms | 10oms 1100ms 200ms 300ms 400ms 500ms
Network delay

Only optimal under 10ms network delay

A5

Slow-tolerant protocol suffers from static timeouts

MultiPaxos EPaxos Copilot

100 -

Performance
Degradation (%)
(&)

o

N
63

o le.

*

|
100us 1ms | 10oms 1100ms 200ms 300ms 400ms 500ms
Network delay

o

c Do nothing when delay < 10ms (fast-takeover timeout)

46

Slow-tolerant protocol suffers from static timeouts

100 -

Performance
Degradation (%)
N (&) ~N
(&)} o (6}

o

MultiPaxos EPaxos

|
|
—
= |
|
|
|

*
|

Network delay

10ms 1100ms 200ms 300ms 400ms 500ms

Q Heartbeat missed at 100ms, but still functioning until 1s

(BEACON_SENDING_INTERVAL)

(BEACON_MISS_INTERVAL)

47

Hard to anticipate real-world slow faults and deployment

Cannot change x > Dynamic

. t
Static once se Slow

Threshold x » Manifest with unforseen) Fault

Hard to adapt workloads, envs, etc.

48

Static threhsold works for fail-stop ...

FAIL-STOP HEALTHY

Non-functional Full-speed

Fail-stop has a clear boundary to distinguish

Y

Conservative static thresholds will do!

HDFS.datanode.ConnTimeout = 30s
cassandra.CONNECT_TIMEOUT MILLIS = 5s

49

... but not for fail-slow!

FAIL-STOP HEALTHY

Non-functional Full-speed

Fail-slow is non-binary and dynamic

Y

Hard thresholds won’t work well!

Failure detection needs to be adaptive

50

We propose ADR: Adaptive Detection at Runtime

XXX .Jjava

X = ...,
if (X > T){

}

4

Built-in variable X

51

We propose ADR: Adaptive Detection at Runtime

XXX .Jjava

X = ...,
if (X > T){

}

4

Built-in variable X

Value of X

Static threshold T

30

26

37

69

121

89

21

28

1K

1K

1K

1K

1K

1K

1K

1K

52

We propose ADR: Adaptive Detection at Runtime

XXX .Jjava

X = ...,
if (X > T){

}

Value of X | 30

26

37

69

121

89

21

28

/4 Static threshold T | 1K

Built-in variable X

1K

1K

1K

1K

1K

1K

1K

How to build an adaptive threshold?

53

We propose ADR: Adaptive Detection at Runtime

XXX .Jjava

X = ...,
if (X > T){

}

Value of X | 30

26

37

69

121

89

21

28

/4 Static threshold T | 1K

Built-in variable X

Our answer: Use simple statistics of historical values

1K

1K

1K

1K

1K

1K

1K

How to build an adaptive threshold?

99th percentile

54

We propose ADR: Adaptive Detection at Runtime

XXX .Jjava

X = ...,
if (X > T){

}

Value of X

/4 Static threshold T

Built-in variable X

Adaptive threshold p99

30

26

37

69

121

89

21

28

1K

1K

1K

1K

1K

1K

1K

1K

54

57

49

48

51

58

53

56

55

We propose ADR: Adaptive Detection at Runtime

XXX .Jjava

X = ...,
if (X > T){

}

Value of X

/4 Static threshold T

Built-in variable X

Adaptive threshold p99

Slow fault?

30

26

37

69

121

89

21

28

1K

1K

1K

1K

1K

1K

1K

1K

54

57

49

48

51

58

53

56

56

Challenge 1: p99 means always 1% false positives

Challenge 1: p99 means always 1% false positives

Challenge 2: Real slow faults or
normal workload variations?

(a) From heavy to light (b) From light to heavy

(T} {7}

& 10° & 10°

3 RESTTWY 8 CCee gy
2 10 ‘ o 10* f

5 5

290 E e | 2 40° et

S S '

© 4 © 102

|'E 60 120 180 240 |'E 0 60 120 180 240

Time (s) Time (s)

Workload intensity may affect system states .

We observe:

Workload variations can be well described by

the update frequency of variables

XXX .java

X = ...,
if (X > T){

}

4

Built-in variable

The number of times X gets updated in a second

o9

XXX .Jjava

X = ...,
if (X > T){

}

4

Built-in variable X

Case 1: Heavier workloads

Value

Update

Frequency
resp./second

30

26

37 | 69

121

89

21

28

101

110

105 | 210

240

220

101

104

Frequencyf = Workload f

Normal variation!

60

XXX .Jjava

X = ...,
if (X > T){

}

4

Built-in variable X

Case 1: Heavier workloads

Case 2: Lighter workloads

© \Vale

Update
e P

Frequency
resp./second

30 { 26 [37 |26 | 29 | 31 | 21 | 28
101 ({110 (105 46 | 51 | 37 | 101|104
Frequency § + Value— = Workload

Normal variation!

61

XXX .Jjava

X = ...,
if (X > T){

}

4

Built-in variable X

Case 1: Heavier workloads

Case 2: Lighter workloads

Case 3: Slow faults

Value

Update

Frequency
resp./second

30

26

37

69

121

89

21

28

101

110

105

25

31

22

101

104

Frequency$+ Value™v = g

Slow Faults!

62

ADR as a plug-in: Replacing existing static logic

Slow sync detection in HBase

1 public void postSync(syncTime) {
2 if (syncTime > 100ms) { — Warning threshold
LOG.INFO(...);

if (syncTime > 10s) { «—— Fatal threshold
requestLogRoll();

¥

0O N O L1 A W

ADR as a plug-in: Replacing existing static logic

Slow sync detection in HBase

Slow sync detection using ADR

1 public void postSync(syncTime) {
2 if (syncTime > 100ms) {

3 LOG.INFO(...);

4 if (syncTime > 10s) {
5 requestLogRoll();
6 }

7 }

8 }

1 public void postSync(syncTime) {

2 if (ADR.isWarn(syncTime, >’, 100ms)) {

3 LOG.INFO(...);

4 if (ADR.isFatal(syncTime, “>’, 10s)) {
5 requestLogRoll();

6 }

7 }

8 }

64

(%)

(%)

100

—
1

101

Evaluation

(a) Degradation

11T | T T

751
50 1
251

N W s~ O

1 83 1 832 1 832 1 8 32 1 8 32 1 8 32
10K 1M 10K 1M 10K 1M

readonly mixed writeonly
Thread count / record count / workload

65

Evaluation
Without ADR: 97% degradation

(a) Degradation
100+ == == — - I— -I- = I ______________________ [{
75 I I
¥ 501 I]
251 I z I I
0- I :] l

1 8 32 1 8 32 1 8 32 1 8 32 1 8 32 1 8 32

10K 1M 10K 1M 10K 1M

readonly mixed writeonly
Thread count / record count / workload

Reduce degradation by 16-90%

66

—
1

Evaluation

(b) Time to detect

N W s~ O

1 8 32 1 8 32 1 8 32 1 8 32 1 8 32 1 8 32

10K 1M 10K 1M 10K 1M

readonly mixed writeonly
Thread count / record count / workload

Reduce degradation by 16-90%

Timely detection in seconds

67

Evaluation

Reduce degradation by 16-90%

Timely detection in seconds

(c) Overhead

. | [1)L {J Minimal 2.8% average overhead

lllllll

10K 1M 10K 1M 10K 1M

readonly mixed writeonly
Thread count / record count / workload

Conclusion
1. Automated testing pipeline to measure slow-fault tolerance

2. Slow-fault tolerance is nuanced and sensitive to

e Slow faults: Severity, type, location, duration, start time

* Deployment: Resources, configs, workloads
3. Detecting slowness with static thresholds is insufficient

4. ADR - lightweight, adaptive slow-fault detection library at runtime
[=] Ig

The testing pipeline and ADR are available at
https://github.com/OrderLab/xinda

69

https://github.com/OrderLab/xinda

